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SIMULATION OF SOME AUTOREGRESSIVE MARKOVIAN SEQUENCES
OF POSITIVE RANDOM VARIABLES

by
A. J. Lawrance

and

P. A. W. Lewis

ABSTRACT

Methods for simulating dependent sequences of continuous
positive-valued random variables with exponential, Gamma, mixed
exponential and uniform marginal distributions are given. 1In
most cases the sequences are first-order, linear autoregressive,
Markovian processes. A two-parameter family of this type
with exponential marginals is defined and its transformation
to a similar multiplicative process with uniform marginals
is given. It is shown that for a subclass of this two-
parameter family extension to mixed exponential marginals is
possible, giving a model of broad applicability for analyzing
data and modelling stochastic systems. Efficient simulation

of some of these schemes is discussed.




1. INTRODUCTION

In a recent series of papers [1,2,3,4,5,6,7,8] some
simple models have been derived for stationary dependent
sequences of positive, continuous random variables with given
first-order marginal distributions. In general the dependency
structure, as measured by second-order joint mcments (serial
correlations) mimics that of the usual linear mixed auto-
regressive-moving average (ARMA) models which have been used
for so long in time-series analysis. In the ARMA models,
which are defined quite generally, there is in usage an

implicit assumption of marginal normality of the random vari-

ables. This is clearly not the case if the random variables
are positive, say the times between events in a series of
events [9] or the successive response times at a computer
terminal. Thus the new models are derived to accommodate
situations in which the dependent random variables have, for
instance, exponential, Gamma, Laplace and mixed exponential
marginal distributions. The exponential case is the most
highly developed, with the nomenclature [4] EARMA(p,q)
(exponential process with mixed moving average-autoregressive

structures of orders p and q respectively) and NEARMA(p,q)

(new EARMA(p,q)) .




The development of the probabilistic properties of
these processes is given in the referenced papers, applications
to queueing models and computer system modelling in [10,11]
while development of estimation and testing procedures has
just begun.

The object of the present paper is to define and
discuss the simulation of the processes on digital computers,
though for the sake of brevity only the first-order Markovian,
autoregressive case is considered. The simplicity of structure
of these models--in general they are linear additive mixtures
of random variables--makes them ideal for this purpose. How-
ever stationarity conditions are sometimes difficult to derive
analytically and in some cases it is not simple to generate
the innovation random variables in the processes. A striking
example of this is the case of the Gamma first-order autore-
gressive process for which an efficient means of simulation
has only recently been found (7] for some parametric values.
It is shown that a simple transformation of the exponential
sequences gives a direct multiplicative method for generating
dependent processes with uniform marginals. These could be
the basis in simulations for many other types of dependent

sequences .
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2. EXPONENTIAL AUTOREGRESSIVE MARKOVIAN SEQUENCES
We give here three methods of generating first-order
autoregressive, Markovian sequences with exponential marginal
distributions. The first two are defective in terms of their
sample path properties (the first more so than the second)
while the third, NEAR(l), is satisfactory in this respect.
The defect of the first two models is also highlighted by
the simulation procedures used; they can be generated from
one sequence of exponential variables.
Note that autoregression in the context of a stochastic
sequence {xn} is vaguely used. In the first place linear,
additive autoregression is usually implied. 1In the second
place autoregression can mean that in the defining equation
for X, the previous value enters explicitly, but more 4
particularly it means that the conditional expectation of

xn, given xn_1 = X1 is an additive linear function of

*-1f

E(anxn_l =x,_q) =a+bx .. (1)

The Markovian property (first-order) means that the probability

structure of X, Xp4preee ¢ given X . = x

is independent

Of xn_2, x -3'000 .




2A. The Exponential DAR(1) Process

A very simple exponential autoregressive Markovian

sequence is generated by the equation
; X, =VX_, ¢ (1 -V)E, , (2)

where P{Vn=1} =1 - P{vh=°} =p and E, n=1,2,... are

independent exponential random variables with parameter A;

i P{En < x}
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For this process the serial correlations P = corr(xn,xn+k)

are

L]
©

P (4)

and

E(X X, 3 =% 1) =p;x 5 + (1-0,)/), (5) ;

This process is an exponential version of the DAR(l) process
(12,13] but is rather useless for modelling real data because
simulations of the process show runs of xn's with the same k

value. These occur when Xn-1 is picked successively in (2),




rather than the innovation E . Moteover the lengths of the

runs of similar values are geometrically distributed.

2B. The Exponential EAR(1l) Process

Another model is derived from the usual linear model

Xp = PXho1 * 5y (6)

in which the i.i.d. innovation process {en} is chosen so
that the xn's are marginally exponential(A). Gaver and

Lewis [1] show that for this to be true, one must have

0<p<1l and

€ = E w.p. l-p,

=0 wW.p. P , (7)

where {En}, as throughout the paper, are i.i.d. exponential(}).

. N - = -
Again g, = 0" and E(xnlxn_l =%, 1) = eyx 1 + (1-p1) 4,

as at (4) and (5) for the exponential DAR(1l) model. The

difference is in the sample paths; for the EAR(1l) process

simulations show runs of xn's decreasing geometrically.

These occur when only PX. 1 is picked in (6). Again the

lengths of these runs are geometrically distributed.




The Markov property of the two sequences implies
that if xo is chosen to be Eo, an exponential (1) random i
variable independent of El’ Ez, .ss 4 then xl’ xz,...
forms a stationary sequence. .
Naive inspection of the defining equations (2), (6)
and (7) suggest that to generate a stationary sequence of
length N, xl,..., Xygr (N+1) i.i.d. exponential deviates
and N uniform variates (for the selection process) are
needed. However, the sequences can be generated from only
one exponential sequence; this is possibly related to the
degeneracy in the processes. This method uses the memoryless
property of exponential (A) variables, namely that if En
is given to be greater than a constant vy, then En -y
is again exponential ().
Thus the algorithm is to initialize by setting
XO = EO; subsequently set xn = pxn-l if Enixp=—£n(l-p)/>\;
otherwise set Xn = pxn__
that, from (3), P{En < xp} = p.

1 * (En - xp). This uses the fact

Even greater efficiency can be obtained, though this
must be qualified by considerations as to whether the xn's
are to be generated one at a time or in an array; whether
a subroutine is available to generate exponential random
variables faster than can be done by taking logarithms of
uniform deviates, and the relative speed of division and

generation of uniform deviates.




The more efficient scheme recycles uniform variables,
i.e. if U is given to be between constants a and b,
where 0 < a <b <1, then (U-a)/(b-a) is a uniform
random variable. (Note that its value is not given, only
that it is in (a,b).) Thus to generate an array

xl,..., XN, of dependent exponential variates with mean 1

from the EAR(1l) process we have

# Algorithm 1l (EAR(1l) process)

1. Generate U and set x0 « =2n U

2. Generate U and set Y « U

: ‘ 3. n+1

] 4. If Y < op go to 7

' 5. X+ pX _; - #n(¥-p) + #n(l-p)

- 6. Generate U, set Y « U and go to 8

7. X_ <« pX

n n-17 ¥ © Y/0

8. Set n <« n+l

9. If n <N go to 4

10. Otherwise exit.

The expected number of uniform deviates required in this

algorithm is 1 + (1-p)N, which is less than the number N

required to generate an i.i.d. exponential (1) sequence.




2C. The Exponential NEAR (1) Process

A broader two-parameter exponential sequence which
is a first-order autoregressive, Markovian process and an
additive linear mixture of random variables is given by
Lawrance [7] and developed by Lawrance and Lewis [5]. Called

NEAR(1) , the sequence is defined as

x = g + n=l’2'ooo ' (8)

where 0 < a <1 and 0 (B8 < 1l. It can be shown that for

the xn to be marginally exponential()) the innovation !
variable €n must be generated from an En by the exponential
mixture
18
En W.Pe ToTI-5)B
€n = n=1,2,... (9)

(1'0) @n wW.p. ﬁiL_aW

providing o« and g are not both equal to one. When o =0

) i

or B =0 the {xn} are exponential i.i.d., whereas when

a = 1 the EAR(l) model given at (6) and (7) is obtained. 1In
fact fixing either a or B and varying the other parameter
gives an exponential model with a full positive range of

serial correlation of order one, since it is easily shown

that




_ k
P = (aB)™ (10)

Again
E(X IX _, =x _;) =oBx _; + (1-a8)/)

= pyx 1 + (1=p;)/A (11)

and xo = Eo gives a stationary sequence. The NEAR(l) pro-
cess allows one to model a broader class of exponential
sequence as measured either by sample path behavior or higher-
order joint moments; see [5] for details.

A particularly simple case occurs when B = 1l; this
model, called TEAR(l), is very tractable analytically and,
as will be shown below, extends easily to the case of mixed
exponential distributions for the xn.

Note that in the NEAR(l) process the innovation €n
is always present unless a =1 and it is therefore not
possible to simulate the stationary process with less than
N+l uniform variates. The simplest method to generate

dependent exponential variates with mean 1 from the NEAR(1l)

process seems to be the following:

Algorithm 2 {NEAR(1l) process)

l. Generate U; set x0 “« =2n U; v « 1l-a;
§ « (1-8)/[1 - (1-a)B].
2. Generate U; set n +« 1.

3. If U<vyset Y« U/y and go to 7.




4. Otherwise Y + (U - v)/(1 - ¥).

5 5. If Y <& set X <« BX _, - anY+ins and go to 9.

6. Otherwise set X =« gX _, - y8 fn[(¥Y-§)/(1-8)] and
go to 9.

7. If Y <§ set . xn «=n Y + 2n § and go to 9.

8. Otherwise set xn « =y n[(¥Y-8)/(1-8)].
9. Set n <« n+l.

10. If n { N generate U and go to 3. Otherwise exit.

Note that for stationary array of N xn's, exactly

N+l uniforms are required and therefore it could be advantageous

to generate these in an array which would be replaced one at
a time by the xn's. Care must be taken with the recycling
f of the uniform variates U if vy = l-a is close to one or
5 zero. In that case it is probably better for computational
‘ reasons to use 2(N+l) uniform variates. Note that y =1

gives the EAR(l) process.

g 3. UNIFORM MARKOVIAN SEQUENCES

It is convenient to have dependent sequences of random

variables with marginal distributions other than exponential.
Before discussing other solutions to the Equation (8) we

show that a simple transformation of the NEAR(l) process gives

a two-parameter family of Markovian random variables with
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uniform marginal distributions. It is well-known that an

exponential transformation of a unit exponential random vari-
able gives a uniformly distributed random variable. Thus we
have from (8) and (9) the multiplicative model for a uniform

Markovian sequence {xn}' n=1,2,... ;

8

xn = En'xn_l w.p. o« %
=€ w.p. (l-a) (12)
E
ns= l,2,oo' ’
where
e =1U w 1-8 (13)
n n P I-{I+a) B
(1-a) B
U, W.P. T-Ti-9) B (14)
n=1,2,...

for Un' n=1,2,..., i.i.d. uniformly distributed, providing
that o« and B8 are not both equal to one. Again if X,
is uniformly distributed and independent of Uyr Uyr one the ]
sequence is stationary.

An algorithm for generating this two-parameter uniform

sequence is easily adapted from Algorithm 2. It remains to

find the correlation structure and the regression of xn

on X _,-

To do the former, let x; be a NEAR(l) sequence with

A = 1, so that the sequence x, at (12) is given by E

11




X, = eﬂﬁ{-x;}. Now the joint Laplace-Stieltjes transform of

x;, x:_k is given by Lawrance and lewis [5] as

¢ (s, t)
e Xk

= E{exp[-sx; - tx;_k]} (15)

k . k-1 .3
=d® T ¢€(818) ¢x*(8ks + t) + 2 (1-a)al g

o Bis)e . (t) ,
i=0 =0 i=0 € x*

where ¢e(s) and ¢x*(s) are respectively Laplace-Stieltjes

transforms of € defined at (9) and the exponential variable

X*. Setting s =t =1 in (15) gives

o~
[
-
-
e
i

E{exp(-X*) exp(-X*_,)} f

= E(X X __

x! - (16)

Then using the fact that for a uniform random variable
E(X) = 1/2 and var(X) = 1/12, we have from (15) and (16),
after simplification ]

k
3 o
P, = corr(X ,X .) =
k n’Tn-k’ " 37, gk 121(1+ (l-a)Bi)

k=1,2,... . (17)

12




Note that this is not simply a geometrically decaying corre-
lation sequence, as for the NEAR(l) process. However, for the

important special case when B =1 we get

k
[+ ]
pk = (:-_a) ’ k = 1,2,0.. ’ (18)

and thus the serial correlations P are the kth power of

Py’ which takes on any value between 0 and 1. Thus we have

e T AR OB A

a particularly simple uniform Markovian sequence.
A similar analysis given in Lawrance and lLewis [5]

shows that

E(X,1X,_; = W = 3 iyt (L -o+ of) (19)
so that the regression is not linear.

This uniform sequence could form the basis, via a
probability integral transform, of many other sequences with
given marginals. However, marginal transformations do not
preserve correlation structure, as shown at (17), and it is
therefore useful to see whether sequences with marginals
other than exponential can be generated from (8) for special

cases with a suitable choice of innovation sequence €ne This

will result in a simple process with autoregressive Markovian

v structure.




4. MARKOVIAN SEQUENCES WITH SOME OTHER MARGINALS
Although an exponential distribution is a common assump-

tion for positive random variables met with in problems in
operations research, it is too narrow an assumption to encompass
real situations. Therefore parametric distribution models are
invoked which include the exponential as a special case and
which allow for the modelling of data which has greater or lesser
dispersion than exponentially distributed data. Two commonly
used models are

(i) the Gamma(k,)) distribution whose probability density

function is

A(Ax)k'le-kx
I'(k) ’

£(x) = k>0; A >0; x>0,  (20)

where T (k) is the complete gamma function, and
(ii) the (convex) mixture of exponential random variables

-A. X -A.X

f(x) = ™M + (l-wl)e v

0« Al < AZ: x>0, 0<m

gm o<l (21)

The Gamma distribution has dispersion, measured by the coef-
ficient of variation C(X) = o(X/E(X)), which is greater than
the exponential value of 1 if k < 0 and less than 1l if k > 1.
The mixed exponential always has C(X) > 1, the equality
occurring when the special case of an exponential random vari-

able with parameters Al or Az holds.

14




4A. The Gamma GAR(1l) process 5

Direct solution of equation (6) using Laplace-Stieltjes
transforms gives [1] that, in the stationary sequence, for the

Xh to be Gamma(k,\) we must have ’

k

¢ (8) = E(e™5F) = Ip + (1-0) T

For k integer this has an explicit inverse. For example,

for k = 2 the innovation € is zero with probability pz,
is exponential (A\) with probability 2p0(l-p) and is Gamma(2,})
with probability (l-p)z. It is easy to show in general that ¢

is zero with probability pk, so that the "zero defect" is not T
serious for large k. A method of simulating a random variable

whose Laplace-Stieltjes transform is equation (22) was derived

by Lawrance [7], using the fact that this sequence arises in

a particular type of shot noise process. Thus we have the

Gamma Innovation Theorem

Let N be a Poisson random variable with parameter

6 = -k 2n(p). Let Uyr Upreen » Uy be uniformly distributed

N
over (0,1) and independent. Let Yioeeer Yy be exponential (1)

and independent. Then € can be simulated using

N U
e= J vypo™ if ND>O,
m=l W

=0 if N=20 ., (23)
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A proof is not given here. Note that € is zero with prob-
ability exp{~k &n(p)} = pk. Also the Poisson number N

of uniform and exponential random variables which must be
generated for each ¢ has expected value 6 = -k 2n(p).

This will be prohibitively large, and the simulation will be
very inefficient, if k is large and/or o 1is close to zero.
Neither of these cases is serious, however. If k is large,
say greater than 50, the sequence is almost normal and the
usual normally distributed, AR(1l) linear process can be used.
If p is as small as 0.001 then E(N) is still only

k x (6.9078) which is still reasonable. However, for o

this small the sequence is approximately i.i.d. Gamma and
acceptance-rejection techniques for simulating Gamma variables
are known.

It is quite simple to adapt Algorithm 1 to the GAR(1l)
case. It would pay to have a built-in routine for generating
the Poisson variable which will bypass further calculations
if N = 0. In other words routines for generating Poisson
variates which start by searching at the median of a table
of cumulative Poisson probabilities will be inefficient.

Unfortunately the NEAR(1l) process does not appear to
extend to the Gamma case; it can be shown explicitly that
there is no innovation ¢ in equations (8) and (9) which

n
will make xn have a Gamma distribution with k = 2.

16




4B. Mixed Exponential Markovian Process

Fortunately first-order autoregressive Markovian
processes with mixed exponential marginal distributions can
be obtained from equations (8) and (9) in two special cases,
and these sequences should be widely useful in modelling
stochastic systems.

(i) The case o = 1; MEAR(l).

In (1) it is shown that the solution to the Laplace
transform of €n for the linear model (6) is a constant p
plus a (generally) non-convex mixture of three exponential
functions. This can be shown to be a proper density function
if p < A;/2,, but it can also be shown that it is not a
density function for all p 1less than one and greater than
or equal to zero. However, Lawrance [6] showed that unless
Al is much smaller than Az (and thus the X, are very
over-dispersed relative to an exponential random variable)

a solution exists for €n for all p. Thus we have a use-
ful process, although again the zero-defect of order p is a
problem.

(ii) The case B = 1; MEAR(1l).

When 8 = 1 in equation (8), a mixed exponential process
TMEAR(l) is obtained which is extremely simple to simulate
since the innovation ¢ is just the mixture of two exponentials

n
for all 0 { p < 1. Moreover, the process has no zero-defect.
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As discussed above, the sample paths will tend to "run up,"
but this is no great problem unless p is fairly large.
Thus we have the following Theorem which we state without

proof:

TMEAR(1l) Theorem

Let the first-order autoregressive, Markovian sequence

{xn} be defined by

xn=en+vnxn-l ’ n=l,2,3,...

where P{Vh=1} =1 - P{Vh=0} =a for 0 < a < 1l. Then the
sequence {Xh} is stationary and has a (convex) mixed exponential

marginal distribution with probability density function

—Alx -2
fx(x) = wllle + (l—wl)e ’

0 CA <Ayp 0¢Cm <1; x>0, (24)

if €n is i.i.d. and has a mixed exponential distribution given

by

-le ~Y X
£ (x) =n,v,e + npvge '




n o= i-(B - /v /vy - Yy)
= (b + (b2 - 4ac)?1/2a ;
as=s (l-a)uluz;

U= MUy b MWy o= E(X) ;
b=, +u = oau;

B =My + Uy = W u = /vy v, = 1/y,

and X
density function (24).
Note that the special cases where ™= 0 or T, =

give NEAR(l) exponential processes with parameters Az and

A respectively. Thus they should be handled by Algorithm 2

1
since they will cause computational problems. The case

Al = Az also gives a NEAR(1l) process and is excluded for
similar reasons.

| Another computational problem arises from the fact
that the probability density function (25) for € 1is not a
convex mixture if, as is possible, ny is greater than one.
Of course, if " <1 then ¢ is generated as an exponen-
tial(y,) random variable with probability n; and as an
exponential(Yz) with probability (l-nl). In the other case

we use the following theorem (see e.g. (1)):

) is independent of €17 Egr -e- and has probability

1

|




Simulation of Nonconvex Mixed Exponential

et § = nl(l-yz/yl). Then with probability 1-8
the innovation € 1is an exponential(yl) random variable
and with probability & the innovation ¢ is the sum of
an exponential(yl) random variable and an exponential(yz)
random variable.

It would be useful to have a mixed exponential solu-
tion for the sequence (8) for all 8 for convex mixed
exponential marginal distributions, but this seems difficult

to prove because of the algebra involved.

5. GENERALIZATIONS

In all of the processes discussed here the correla-
tions are non-negative and geometrically decreasing. A scheme
for obtaining alternating correlations which are possibly
negative is given in [1] and (5]. Another problem is that
different types of dependence and higher-order Markovian
dependence might be encountered in data. Schemes for obtain-
ing mixed autoregressive moving average exponential sequences
where the autoregression has order p and the moving average
has order q are given in (4). The mixed exponential process
TMEAR(1) is easily extended to give a process with this type
of extended correlation structure. This will be discussed

elsewhere.

20
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